Methanotrophic Bacteria

Methanotrophic Bacteria

Question: According to the recent discovery of Scientists of Agharkar Research Institute (ARI) the different strains of methanotrophic bacteria has the capacity to reduce methane emissions from which of the following plants?
(a) Rice
(b) Wheat
(c) Gram
(d) Urad
Answer: (a)
Related facts:

  • Scientists at Agharkar Research Institute (ARI), Pune, have discovered that methanotrophic is capable of reducing methane emissions from rice plants.
  • Scientists informed that Methanotrophs metabolise and convert methane into Carbon dioxide.
  • These bacteria can effectively reduce the emission of methane, which is the second most important greenhouse gas (GHG).
  • It should be known that Methane is 26 times more potent as compared to carbon-di-oxide.
  • In rice fields, methanotrophs are active near the roots or soil-water interfaces.
  • Dr. Monali Rahalkar, Scientist from Bioenergy Group, ARI, and her team working on methanotrophs, have enriched, isolated, and cultivated the 45 different strains of methanotrophs.
  • This team has created the first indigenous methanotroph culture.
  • The study was published in Antonie van Leeuwenhoek, an International Journal of General and Molecular Microbiology.
  • They isolated indigenous methanotrophs from Western and Southern India, mainly from rice field soils and freshwater mud.
  • They have documented two novel genera and six novel species of methanotrophs from rice fields in Western India.
  • In pot trials, some of the strains were used as bio-inoculants in rice plants.
  • The team found that there was a decrease in methane emissions in inoculated plants with a positive or neutral effect on the growth of the rice.
  • This could lead to the development of microbial inoculants for methane mitigation in rice.
  • Rice fields are human-made wetlands and are waterlogged for a considerable period.
  • Anaerobic degradation of organic matter results in the generation of methane. Rice fields contribute to nearly 10% of global methane emissions.
  • Very few studies in the world have focused on methanotrophs from tropical wetlands or tropical rice fields.
  • Before scientists at ARI started their studies, practically no cultures of indigenously isolated methanotrophs from India were available.
  • Native and relevant methanotrophs isolated from rice fields can be excellent models to understand the effect of various factors on methane mitigation.
  • Ammonium fertilizers, increasing temperatures (due to global warming) are some of the important factors which the team plans to study in the future.

Links:
https://pib.gov.in/newsite/PrintRelease.aspx?relid=200137